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Abstract

In this paper, we study how discrete systems of sticky particles give rise to solutions of

the conservation law Mt + F (M)x = 0 for accumlated mass in one dimension. We show that

the physically natural solution in the discrete setting is in fact the unique entropy solution to

the conservation law. We then give a more detailed proof of a particle collision criterion of E,

Rykov, and Sinai, and use this to verify a variational formula for the entropy solution which is

a discretized version of the variational formula given in a pre-print of Tadmor and Wei.
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Introduction

In this paper, we study a mathematical model for finite systems of “sticky” particles in one dimen-

sion — particles that move along the x-axis with constant initial velocities until they collide, at

which point they stick together, preserving mass and momentum. For motivation, we show how,

if ρ is a smooth particle density obeying the laws of conservation of mass and momentum, then

the accumulated mass function M(x, t) =
∫ x
−∞ ρ(s, t) ds for this system obeys its own conservation

law, Mt + F (M)x = 0 for a certain flux function F . We use this PDE as our starting point for the

discussion of the discrete density case.

First we rigorously construct the physically intuitive model of the sticky particle system, working

collision-by-collision and specifying the mass and velocity of each particle in the system at each

time. This model in fact gives rise to a weak solution to the conservation law Mt + F (M)x = 0

for piecewise-constant, non-decreasing, right-continuous intial data (i.e. initial data which are like

the initial accumulated mass of a discrete particle system). Furthermore, we show that our weak

solution obeys a condition on chord slopes on the graph of the flux function F , and is thus the

unique entropy solution to the accumulated mass conservation law, by a result of Kruzhkov [3].

Having established a theoretical framework in which the sticky particle model is the natural

solution to a partial differential equation, we then seek to give a more useful characterization of

the state of the system at a given time. Since every other feature of the system (particle position,

masses, and velocities) can be derived from the accumulated mass, this amounts to giving a clean

characterization of M(x, t) forward in time. For this, we discretize a closed-form variational formula

for the smooth density system presented by Tadmor and Wei [5]. The key tool used in verifying the

discrete variational formula is a collision criterion presented by E, Rykov, and Sinai [4], which allows
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us to determine whether a group of particles has collided by checking a simple inequality involving

only the initial positions, masses, and velocites of the particles involved. We give a thorough proof

of a slight variation of this criterion, and use it to verify that the discrete variational formula

describes our constructed sticky particle model.

1 The Smooth Density Model

1.1 Conservation Laws and Burgers’ Equation

We begin with a smooth, non-negative function ρ : R× [0,∞)→ R. For each time t ∈ [0,∞), the

function ρ(·, t) represents a fluid density in one dimension, and so the function ρ(x, t) represents a

smooth one-dimensional fluid denisty changing smoothly with time. We will also consider a smooth

function u : R × [0,∞) → R, which, at each fixed time t, gives a smooth vector field on R which

represents the flow velocity of the fluid. That is, the value u(x, t) is the velocity of a particle at

position x and time t. Such a system obeys a pair of partial differential equations called the Euler

equations, which are

ρt + (ρu)x = 0 (1.1a)

(ρu)t + (ρu2)x = 0 (1.1b)

and which we will derive from basic physical principles below.

First, for each starting position x0 ∈ R, we let x(t, x0) be the trajectory over time of a particle

starting at x0 according to the velocity field u. Formally, x solves the ordinary differential equation

ẋ(t, x0) = u(x, t)

x(0, x0) = x0.

In order to derive the Euler equations for our fluid model, we assume formalizations of the principles

of conservation of mass and momentum, respectively, and apply the Reynolds transport theorem.

This theorem states (in one dimension) that if Ω(t) = (a(t), b(t)) is a smoothly changing region in
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R and f(x, t) is a smooth function, then

d

dt

∫
Ω(t)

f(x, t) dx =

∫
Ω(t)

ft(x, t) dx+ b′(t)f(b(t), t)− a′(t)f(a(t), t).

In order to apply this to the conservation of mass, we assume two things:

(i) The region Ω(t) is a closed system; that is, that particles do not enter or leave Ω(t) over time.

Formally, Ω(t) moves according to the flow velocity:

Ω(t) = x(Ω0, t).

(ii) The mass of Ω(t) remains constant over time:

∫
Ω(t)

ρ(x, t) dx =

∫
Ω0

ρ(x, 0)dx.

We apply the transport theorem to this second criterion to deduce

0 =
d

dt

∫
Ω(t)

ρ(x, t) dx =

∫
Ω(t)

ρt(x, t) dx+ b′(t)ρ(b(t), t)− a′(t)ρ(a(t), t).

Note that, since the region moves according to the flow velocity, a′(t) = u(a(t), t) and b′(t) =

u(b(t), t). Applying the divergence theorem (which, in the one-dimensional setting, is just the

fundamental theorem of calculus),

0 =

∫
Ω(t)

ρt + (ρu)x dx.

This allows us to deduce that ρt + (ρu)x is in fact zero everywhere, by letting Ω be an arbitrary

region and t a positive time, and applying the above calculation to the starting region Ω0 = x(Ω,−t)

obtained by flowing Ω backwards for time t according to the flow velocity. Hence we have derived

the mass equation (1.1a) from the principle of conservation of mass. An identical calculation,

except requiring that momentum is conserved (according to Newton’s second law, since we assume
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no pressure or external forces are acting on the system):

d

dt

∫
Ω(t)

ρu dx = 0

gives the momentum equation (1.1b). Because of the types of physical interpretations we have just

seen, PDEs of the form ut + F (u)x are in general known as conservation laws.

If we assume that the density ρ is always positive, then subtracting u times the mass equation

(1.1a) from the momentum equation (1.1b) and dividing through by ρ gives the inviscid Burgers’

equation for the flow velocity:

ut + uux = 0. (1.2)

Also, Burgers’ equation implies that

d

dt
u(x(t, x0), t) = uxẋ+ ut = ut + uux = 0,

which means that the velocity field is constant along particle trajectories.

1.2 A Conservation Law for Accumulated Mass

We can calculate the accumulated mass of the density function:

M(x, t) =

∫ x

−∞
ρ(x, t) dx,

and it turns out that M obeys a conservation law of the form Mt + F (M)x = 0 as well. To see

this, first note that

Mt =

∫ x

−∞
ρt dx

=

∫ x

−∞
(−(ρu)x) dx

= −ρu,
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using the mass equation and the fundamental theorem of calculus (Note this also requires an

assumption limx→−∞ ρu = 0, which we will assume). Also Mx = ρ, which implies that

Mt + uMx = 0. (1.3)

As with Burgers’ equation above, this implies that Ṁ(x(t, x0), t) = 0 and thus that M is constant

along particle trajectories, which matches physical intuition. Hence we can view the position of the

particle starting at x0 as a function x0(M) of the accumulated mass M . Furthermore, since u is

constant along particle trajectories, i.e. u(x(t, x0), t) = u0(x0) for every t (from Burgers’), we can

write

u(x(t, x0), t) = u0(x0) = u0(x0(M)),

where M is the accumulated mass corresponding to the starting point x0, and thus we can write u

as a function u(x, t) = f(M(x, t)) = u0(x0(M(x, t))) of M . Letting F be an antiderivative of f , we

thus have derived a conservation law for M :

Mt + F (M)x = 0. (1.4)

2 Discretization

2.1 Weak Solutions and the Jump Condition

We are interested in studying a discrete analogue of this problem: instead of a smooth particle den-

sity ρ, we would like to consider only a finite set of “sticky” (i.e. mass-and-momentum-preserving)

particles. Naively, we would attempt to define a discrete density function, assigning a point mass

and initial velocity to each particle starting position and proceed as in the smooth case. However,

we immediately run into a problem, since in this model, not only are the density and velocity

functions not differentiable — they are only non-zero at finitely many points. So we must adapt

our above approach.

Instead, we will start from the conservation law for accumulated mass, equation (1.4). Formally,
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we want M to be solution to the initial value problem

Mt + F (M)x = 0 (2.1a)

M(·, 0) = M0, (2.1b)

where M0 : R → [0,∞) is a right-continuous, piecewise-constant, finitely valued function, with

limx↓−∞M0(x) = 0. Intuitively, M0 is an initial accumulating mass function for a finite set of

particles, each positioned at a point where M0 has a jump.

Note that, in this model, the function M0 is not continuous. Hence, we will not be able to find

smooth solutions to (2.1), nor would we want to, since the discrete accumulated mass is naturally

piecewise constant forward in time. So in order to “solve” (2.1), we use the concept of weak or

generalized solutions to a conservation law:

Definition 2.1. A bounded function M : R× (0,∞)→ [0,∞) is called a weak solution to (2.1) if

∫ ∞
0

∫ ∞
−∞

Mvt + F (M)vx dx dt+

∫ ∞
−∞

M0v(·, 0) dx = 0 (2.2)

for every smooth, compactly supported, real-valued function v(x, t) on R× [0,∞). In the case that

M is smooth, this condition is equivalent to M being a solution of (2.1), which can be seen via

integrating by parts (see [1] for more detail).

A well-known and important fact about weak solutions to conservation laws is the Rankine-

Hugoniot jump condition, which is described in [1] as well: suppose that (x(t), t) parameterizes a

curve along which a weak solution M(x, t) is discontinuous. Then

F (M+)− F (M−)

M+ −M−
= ẋ, (2.3)

where

M+(x, t) = lim
y↓x

M(y, t)

M−(x, t) = lim
y↑x

M(y, t)
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are the left and right limits in space of M at time t.

2.2 Setting up the Discrete Model

From this starting point, we want to work backwards and recover density and velocity functions

that agree with our intuitive understanding of the model and the relations that these quantities had

with F in the smooth density model. Assume that M(x, t) is a piecewise-constant weak solution

to (2.1). Since we expect there to be a particle at each jump of M with mass equal to the height

of the jump, we can define a “discrete density”

ρ(x, t) = M+(x, t)−M−(x, t).

We can then define the mass of a region Ω to be
∑

x∈Ω ρ(x, t), in analogy with the definition of

mass for smooth ρ.

Slightly less transparently, we then define the flow velocity function by

u =
F (M+)− F (M−)

M+ −M−
, (2.4)

letting it take on the value 0 if M+ = M−. The important thing to notice here is that, if M

were a continuous function as in the smooth model, the limits involved in this equation would

commute with the continuous function M , and result in the equality u = F ′(M), which was the

defining property of F in the smooth model. Also, note that this definition of u agrees with the

Rankine-Hugoniot condition (2.3), since we expect the velocity of the discontinuity of M to be the

velocity of the particle causing the discontinuity.

Finally, some notation: We let x0
1, . . . , x

0
n denote the n points at which M0 has jumps, and say

the jump at x0
i has height mi, i.e. ρ(xi, 0) = mi. Then the points x0

i represent the starting positions

of the particles in the system, with mi being the mass of the particle starting at x0
i (Figure 2.1). We

will also refer to the “particle” xi, which represents the propagating point mass of size mi starting

at position x0
i .
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x

M0
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m1 +m2 +m3

x0
3

Figure 2.1: Initial accumulated mass for a three-particle system

2.3 Assumptions on F

First, we will illustrate by example that conditions must be imposed on F in order for the weak

solution M(x, t) to behave in a physically realistic manner. Suppose that we let F be an arbitrary

smooth function, and consider the case where there is only one particle in the system, and it starts

at position 0.

M0(x) =


0 x < 0

m x ≥ 0.

If we allow F to be smooth, and assume F ′(0) ≤ F ′(m), then the entropy solution to the PDE

(2.1) is given in [1] by

M(x, t) =


0 x

t ≤ F
′(0)

(F ′)−1
(
x
t

)
F ′(0) < x

t < F ′(m)

m x
t ≥ F

′(m)

.

This is, of course, not physically realistic, since the mass function should be piecewise constant:

for any fixed t, it should be zero before the current position of the single particle involved, and m

afterward.

Closer consideration of F helps us determine a reasonable and effective condition to impose.

Intuitively, F ′(M) is the velocity of the particle at which the accumulated mass is M . However,

in this discrete system, the accumulated mass function only takes on finitely many values, so this

interpretation does not quite make sense. Instead, we can interpret F ′(M) as the velocity of the
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M

F

m1 m1 +m2

Figure 2.2: Piecewise affine flux function. The slope of the segment between M = m1 and M =
m1 +m2 is the initial velocity of x2.

rightmost particle at which the accumulated mass is bounded above by M . More formally, we can

view F ′(M) as the velocity at the point at which the accumulated mass is equal to

max
k
{
k∑
i=1

mi ≤M}.

Hence it is reasonable to assume that F ′ is piecewise constant, with jumps occuring at the points∑k
i=1mi for 1 ≤ k ≤ n. Note that F ′ is not necessarily nondecreasing. Of course, assuming that

F ′ is piecewise constant is equivalent to assuming F is continuous and piecewise affine, so this is

the condition that we will impose on F . Also note that the nodes of F occur at 0 and the points∑k
i=1mi for 1 ≤ k ≤ n, and we interpret the slope of the chord connecting the two points

(
k−1∑

mi, F

(
k−1∑

mi

))
and

(
k∑
mi, F

(
k∑
mi

))

as the velocity of the particle starting at position x0
k. Formal justification of this will come a little

later.
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3 Solving the PDE

3.1 A Weak Solution

Consider the n-particle system:

M0(x) =


0 x < x0

1∑i
k=1mk x0

i ≤ x < x0
i+1, i = 1, . . . , n− 1∑n

k=1mk x0
n ≤ x.

Letting u0 = u(·, 0) = (F (M+
0 )− F (M−0 ))/(M+

0 −M
−
0 ), this system has a weak solution

M(x, t) =


0 x < x1(t)∑i

k=1mk xi(t) ≤ x < xi+1(t), i = 1, . . . , n− 1∑n
k=1mk xn(t) ≤ x,

where xi(t) is the trajectory of the particle xi according to the initial velocity

vi = u0(x0
i ),

i.e. xi(t) = x0
i + tvi (see [2]). Of course, this is only well-defined up until the point at which two of

the trajectories xi(t), xj(t) intersect. We will extend the solution past these collision times using a

shock wave.

Since the trajectories are continuous, the first collision must occur between some consective

particle trajectories xk(t), . . . , xk+l(t). That is, the first collision occurs when xk(t) = xk+1(t) =

· · · = xk+l(t) for some l > 0. We continue the solution along a shock path: Let tk,...,k+l denote

the time at which the trajectories intersect (note tk,...,k+l = (x0
j − x0

i )/(vi − vj) for any i, j ∈

{k, . . . , k + l}). Then define a new trajectory

xk,...,k+l(t) = xk(tk,...,k+l) + u(xk(tk,...,k+l), tk,...,k+l)(t− tk,...,k+l),
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x1(t)

x0
1

x2(t)

x0
2

x12(t)

M = 0 M = m1 +m2

M = m1

Figure 3.1: A two-particle collsion.

(where u is defined as in (2.4)) and, for t ≥ tk,...,k+l and x near this new particle trajectory, define

M(x, t) =


∑k−1

i=1 mi x < xk,...,k+l(t),∑k+l
i=1 mi xk,...,k+l(t) ≤ x.

This defines a weak solution of the conservation law (2.1) for all t > 0 (see [2]).

For notational clarity, we will use a multi-index notation for collisions: If α = {k, . . . , k+ l} is a

set of consecutive indices, and if the particles xi for i ∈ α collide, we will say they collide at time tα

to form a new particle xα moving along the trajectory xα(t) for t ≥ tα. Also, for two consecutive

sets of indices α and β, we will denote their union by αβ. This will be used, for instance, in the

collision of two clusters xα and xβ to form a new cluster xαβ.

3.2 Conservation of Mass and Momentum

Now we will argue that this solution preserves mass and momentum. First, mass is preserved along

particle trajectories away from collisions, since ρ(x, t) is just a propagating constant point mass

along such a trajectory. And since a collision replaces a set of particles with masses mk, . . . ,mk+l

with a single point mass of size mk + · · ·+mk+l, mass is conserved through collisions as well.

A bit more analysis is required to show that momentum is conserved. We will prove that

momentum is conserved through a single collision of two particle clusters; the argument for an l-

particle collision is the same, and we can get the full result (after multiple collisions) by induction.

So consider two adjacent clusters xα and xβ. By construction, these trajectories have velocities

u(xα(tα), tα) and u(xβ(tβ), tβ) respectively. And since u := (F (M+) − F (M−))/(M+ −M−), we
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have that

u(xα(tα), tα) =
F (Mk+l)− F (Mk−1)

Mk+l −Mk−1

u(xβ(tβ), tβ) =
F (Mk+p)− F (Mk+l)

Mk+p −Mk+l
,

where here we let Mj denote
∑j

i=1mi, for notational ease. Since the particle cluster xα has mass

mk + · · ·+ mk+l = Mk+l −Mk−1 and the second has mass mk+l+1 + · · ·+ mk+p = Mk+p −Mk+l,

the pre-collision momentum of these two particle clusters is

(mk + · · ·+mk+1)
F (Mk+l)− F (Mk−1)

Mk+1 −Mk−1
+ (mk+l+1 + · · ·+mk+p)

F (Mk+p)− F (Mk+l)

Mk+p −Mk+l

= F (Mk+q)− F (Mk−1).

Similarly, the post-collision cluster has velocity

F (Mk+p)− F (Mk−1)

Mk+p −Mk−1
,

and mass mk + · · · + mk+p = Mk+p −Mk−1, and thus its momentum is equal to the combined

pre-collision momenta of the two particles. Hence momentum is conserved through collisions.

An importance consequence of the conservation of momentum is the following: if n particles

x1, . . . , xn have collided by time t, then the momentum of the post-collision cluster is

n∑
i=1

mivi,

and thus the cluster has velocity ∑n
i=1mivi∑n
i=1mi

.
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4 Uniqueness of the Weak Solution

In addition to the fact that our constructed solution obeys the physical laws of conservation of mass

and momentum, there is a more formal sense in which it is the most “natural” solution to (2.1). In

[3], Kruzhkov defines a technical condition than can be imposed on weak solutions to conservation

laws of the form Mt + F (M)x = 0. The details of the general Kruzhkov condition are beyond the

scope of this paper, but we state the condition here for completeness: A weak solution M to the

conservation law (2.1) is an entropy solution if

∫ ∞
0

∫ ∞
−∞

sgn(M − k)φt + (F (M)− F (k))φx dx dt ≥ 0

for every C1, compactly supported, non-negative test function φ : R× [0,∞)→ R and every k ∈ R.

In [2], Bressan shows that, in the case of bounded, piecewise-constant initial data, a weak

solution is an entropy solution if and only if both the Rankine-Hugoniot conditions (2.3) and the

following condition hold:

Definition 4.1. A weak solution M obeys the chord condition if, at any discontinuity of M(x, t),

F (M)− F (M−)

M −M−
≥ F (M+)− F (M−)

M+ −M−
≥ F (M+)− F (M)

M+ −M
, (4.1)

for all M ∈ (M−,M+).

Geometrically, this condition says that whenever M(·, t) has a discontinuity (i.e. M− < M+),

the chord connecting the points (M−, F (M−)) and (M+, F (M+)) in the FM -plane does not cross

the graph of the flux function F . Note that since we allow equality, the chord may concide with

the graph of F as long as it does not cross from one side to the other.

Kruzkhov proves in [3] that there is at most one bounded entropy solution to (2.1). Since our

construction M(x, t) obeys the Rankine-Hugoniot condition as seen in section 2.2, the following

theorem establishes that our construction is the unique bounded entropy solution to (2.1):

Theorem 4.1. Our constructed solution M(x, t) obeys the chord condition (4.1), and is thus the

unique bounded entropy solution to (2.1).

Proof. It is easy to see that the chord condition holds for M before any collisions occur: before any

14



collisions, F is a piecewise affine function with nodes at exactly the discontinuities Mk :=
∑k

i=1mi

for k = 1, . . . , n of M . Hence the chords coincide exactly with the graph of F , and we have equality

in (4.1) for all M ∈ (M−,M+).

In order to demonstrate that the chord condition continues to hold after finitely many collisions,

we introduce the idea of a flux function that changes after each collision. For notational simplicity,

assume that the first collision occurs between two consecutive particles xk and xk+1, at time t =

tk,k+1. Then for t ≥ tk,k+1, the function M(x, t) is a weak solution to the problem

Mt + F 1(M)x = 0

M(·, tk,k+1) = M1,

where M1 has a jump of height mi at xi(tk,k+1) for i 6= k, k + 1 and a jump of height mk +mk+1

at xk(tk,k+1) = xk+1(tk,k+1) (that is, the particles with mass mk and mk+1 at positions sk(t) and

sk+1(t) have been replaced by a particle of mass mk +mk+1 at their mutual current location). And

F 1(M) agrees with F except on [Mk,Mk+1], where we have

F 1(M) = F (Mk) +
F (Mk+1)− F (Mk)

Mk+1 −Mk
(M −Mk).

That is, on [Mk,Mk+1], the graph of F has been replaced by the chord connecting (Mk, F (Mk)) and

(Mk+1, F (Mk+1)). Proceeding inductively, we obtain a new flux function after each collision, and

since the discontinuities of M at some time t are exactly the nodes of the flux function corresponding

to the state of the system at that time, we can say that M obeys the chord condition if and only

if the graph of the evolving flux function never crosses the graph of the original flux function F .

And we can prove inductively that it never crosses: suppose that the system undergoes some

finite number K of collisions, with corresponding flux functions F = F 0, F 1, F 2, . . . , FK . We’ve

seen that the chord condition holds before the first collision, which we can now phrase as the

statement that the graph of F does not cross itself. Now assume that the chord condition still

holds after the K-th collision; that is, that the graph of FK does not cross the graph of F . We

must argue that the graph of FK+1 also does not cross the graph of F . To see this, say that the

K-th collision occured at time tK , and that the (K+1)-st collision will occur between r consecutive
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Figure 4.1: Initial evolution of the flux flunction if particles x2 and x3 collide first.

clusters xα1 < · · · < xαr , with trajectories xαi(t) = xαi(tK) + u(xαi(tK), tK)(t− tK) for 1 ≤ i ≤ r

and t ≥ tK , and masses mαi . Then collision at time tk+1 implies that

u(xαi(tK), tK)− u(xαi+1(tK), tK) =
xαi+1(tK)− xαi(tK)

tK+1 − tK
> 0,

or, simply that the velocity of each particle involved in the collision is greater than the velocity

of the particle to its immediate right. But recall that the velocity is given by u = (FK(M+) −

FK(M−))/(M+−M−); that is, the velocity u of a particle is the chord slope of the affine segment

of the flux function over the mass jump corresponding to that particle. In particular,

u(xαi(tK), tK) =
FK(Mαi)− FK(Mαi−1)

Mαi − M̂αi−1

.

where the points Mαi =
∑i

j=1mαj are exactly the nodes of the flux function FK . This means that

FK is affine on each interval [Mαi ,Mαi+1 ], and that the slope of FK on [Mαi ,Mαi+1 ] is strictly

smaller than the slope on [Mαi+1 ,Mαi+2 ]. Hence, FK is a concave function on [Mα1 ,Mαr ] and in

particular, the chord connecting (Mα1 , F
K(Mα1)) and (Mαr , F

K(Mαr)) lies below the graph of FK .
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Now, we are ready to show that the chord condition holds post-collision. Observe that the

post-K-th-collision flux function FK+1 is equal to FK except on [Mα1 ,Mαr ], where its graph has

been replaced by the chord between (Mα1 , F
K(Mα1)) and (Mαr , F

K(Mαr)). As we just argued,

this chord lies below the graph of FK . Applying induction, we can conclude that this chord also

lies below the graph of the original flux function F 0 = F , which proves that M satisfies the chord

condition even after collisions.

5 The ERS Collision Criterion

Now that we have shown that the “sticky particle” model is the unique solution to the accumulated

mass conservation law, we look for a simpler characterization of the solution M(x, t). In this section,

we will give a more detailed proof of the following collision criterion, a slight modification of which

is presented and proved by E, Rykov, and Sinai in [4]. This criterion will be the key tool used to

verify the variational formula for computing M(x, t) in the next section.

Theorem 5.1. Let x0
1 < x0

2 < · · · < x0
n be the initial positions of n particles x1, . . . , xn, and suppose

that these particles do not interact with any other particles before time t. Then x1, . . . , xn will have

collided to form a single particle cluster by time t if and only if

∑k
i=1mi(x

0
i + u0(x0

i )t)∑k
i=1mi

≥
∑n

i=1mi(x
0
i + u0(x0

i )t)∑n
i=1mi

(5.1)

for all k ∈ {1, . . . , n}.

Note that this condition, which will we call ERS, says that we can determine whether or not a

group of particles has collided by only looking at their initial (before any collisions have occurred)

trajectories. Also observe that the left-hand side of this inequality is the propagating center of

mass of the initial trajectories of the k left-most particles, and the right-hand side is the analogous

quantity for the entire collection of particles.

In order to prove this theorem, we will introduce some new notation and several lemmas. First,
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for a set of consecutive indices α = {k, . . . , k + l} in {1, . . . , n}, we define

Xα(t) =

∑
i∈αmi(x

0
i + tvi)∑

i∈αmi
=

∑k+l
i=kmi(x

0
i + tvi)∑k+l

i=kmi

,

where vi = u0(x0
i ) is the initial velocity of particle xi. That is, t 7→ Xα(t) is the propagating center

of mass of the original trajectories of the particles with indices in α. Now we present three lemmas:

Lemma 5.1. Suppose that particles xi for i ∈ α have collided to form a single cluster xα by time

t∗. Then for t > t∗, as long as no other particles have collided with xα, the path of the cluster is

given by Xα(t).

Proof. We wish to prove that the post-collision trajectory coincides with the center of mass of

the initial particle trajectories past the collision time. To prove this, note that we have proved

conservation of momentum for the particle systems, which means that the post-collision cluster has

velocity ∑
i∈αmivi∑
i∈αmi

=
d

dt
Xα(t).

So the two trajectories in question are lines with the same slope. So in order to prove our propo-

sition, we must show that they agree at a point. We will show by induction that they agree at

collision time. Formally, we will show by induction that two particle clusters xα and xβ colliding at

t = tαβ will be at position Xαβ(tαβ) at collision time. For notational ease, we will reason through

two collisions, and how to proceed inductively will be clear. Consider three particles x1, x2, x3. Say

x1 and x2 collide first. Then when they collide, their positions are the same, so their center of

mass X12(t12) is located at their mutual location, which is the starting point of the post-collision

trajectory. Hence the claim holds after a single collision. Next, when x12 and x3 collide, their

center of mass will be at their mutual location x12(t123) = x3(t123) = X12(t) = X3(t). That is, their

location is the center of mass of the following two quantities: the center of mass of x0
1 + t123v1 and

x0
2 +t123v2, and x0

3 +t123v3. But since taking center of mass is an associative operation, this location

is the center of mass of all three xi + t123vi for i = 1, 2, 3, or in other words, X123(t123). Hence

the center of mass of the three initial trajectories passes through the collision point. This lets us

conclude that X123(t) and the path of x123 are the same line, and induction proves the lemma.
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Lemma 5.2. Suppose that xα < xβ are two consecutive particle clusters that collide at time tαβ.

Then for t > tαβ we have

Xβ(t) < Xαβ(t) < Xα(t).

Proof. For t < tαβ, the trajectories of xα and xβ are given by Xα(t) and Xβ(t), respectively, by

Lemma 5.1. Since the two particles have not collided before tαβ and their paths are affine functions

of t, we have

Xα(t) < Xβ(t), t < tαβ

Xα(t) = Xβ(t), t = tαβ

Xα(t) > Xβ(t), t > tαβ.

In particular, we have Xβ(t) < Xα(t) post-collision. Now note that Xαβ(t) is a convex combination

of Xβ(t) and Xα(t), since

Xαβ(t) =

∑
i∈αmi∑

i∈αmi +
∑

j∈βmj

∑
i∈αmi(x

0
i + tvi)∑

i∈αmi
+

∑
j∈βmj∑

i∈αmi +
∑

j∈βmj

∑
j∈βmj(x

0
j + tvj)∑

j∈βmj

= δXα(t) + (1− δ)Xβ(t),

where δ =
∑
i∈αmi∑

i∈αmi+
∑
j∈βmj

∈ (0, 1). Hence we can conclude that Xαβ(t) lies strictly between Xβ(t)

and Xα(t) post-collision:

Xβ(t) < Xαβ(t) < Xα(t)

for t > tαβ, which is exactly what we wanted to prove.

Lemma 5.3. Suppose that x1, . . . , xk, xk+1, . . . , xk+l are consecutive particles, and that xk+1, . . . , xk+l

have collided to form a cluster xβ (subsets of x1, . . . , xk may or may not have already collided). As-

sume that xβ collides with (the cluster containing) xk at some time t∗. Then, letting α = {1, . . . , k},

Xαβ(t) < Xα(t)

for t > t∗. In other words: if a cluster enters a group of particles from the right, then the center of

mass of the entire group is moved to the left.

19



Proof. Suppose that the particles x1, . . . , xk have collided to form clusters xα1 , . . . , xαK leading up

to the collision time of {x1, . . . , xk} with xβ. By Lemma 5.2, we know that

Xβ(t) < XαKβ(t) < XαK (t)

for t > t∗. In particular, XαKβ(t) < XαK (t). And since all cluster locations Xα1(t), . . . , XαK−1(t) lie

strictly to the left of bothXαKβ(t) andXαK (t), we know that the center of mass ofXα1(t), . . . , XαK (t)

must be strictly less than the center of mass of Xα1(t), . . . , XαK (t), Xβ(t) (using both the fact that

collisions within xα1 , . . . , xαK will not affect their center of mass, and the assumption that no par-

ticles collide with these clusters from the left). But by associativity of center of mass, this simply

means that Xα(t) < Xαβ(t) for t > t∗, which is what we wanted to show

Now we are ready to present the proof of the collision criterion, Theorem 5.1:

Proof. One direction is straightforward: Suppose that the particles x1, . . . , xn have not all collided

to form a single cluster by time t. In particular, suppose that they have formed clusters xα1 , . . . , xαK .

Then for any J ∈ {1, . . . ,K − 1} we have that the center of mass of xα1 , . . . , xαJ lies strictly to the

left of that of xαJ+1 , . . . , xαK . By associativity, this implies Xα1···αJ (t) < Xα1···αK (t), which means

that the ERS criterion fails at k = maxαJ .

For the second direction, we make use of Lemmas 5.1 through 5.3. Assume that the particles

x1, . . . , xn have all collided by time t, but that the condition 5.1 fails for some k. This means that

X{1,...,k}(t) < X{1,...,n}(t). However, this contradicts Lemma 5.3: Since we assumed that no other

particles interact with x1, . . . , xn, the set of particles x1 . . . , xn is formed as clusters of particles hit

{x1, . . . , xk} from the right, one at a time. Hence, using induction and Lemma 5.3 implies that

X{1,...,n}(t) < X{1,...,k}(t). This is a contradiction, which completes the proof.
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6 Variational Formula

Tadmor and Wei [5] provide the following variational formula for solutions of the mass and mo-

mentum equations in the smooth case:

M(x, t) =

∫ y(x,t)

−∞
ρ0(s) ds,

where y(x, t) is defined as

y(x, t) = sup

{
arginf

y

∫ y

−∞
(s+ tu0(s)− x)ρ0(s) ds

}
.

Since our sticky particle system is a solution to a discretization of the mass and momentum equa-

tions, we would expect it to satisfy a discretized version of the variational formula, and it in fact

does:

Theorem 6.1. The unique entropy solution to the sticky particle problem (2.1) is given by the

formula

M(x, t) =
∑

i|x0i<y(x,t)

mi,

where

y(x, t) = sup

arginf
y

∑
i|x0i≤y

mi(x
0
i + tvi − x)

 .

For fixed x and t, we will denote the functional
∑

i|x0i≤y
mi(Xi(t) − x) by S(y), and note that

x0
i + tvi = Xi(t). Now, to begin proving 6.1, first note that y(x, t) must have the form x0

k for some

k, since S(y) = S(ŷ) for all ŷ ∈ [y, xk0), where xk0 is the smallest particle starting position to the

right of y. Hence minimizing S(y) over y amounts to minimizing Sk :=
∑k

i=1mi(Xi(t)− x) over k.

Also, basic algebraic manipulation with centers of mass tells us that if the particle xj belongs to

the cluster xαJ , then

j∑
i=1

mi(Xi(t)− x) =

J−1∑
I=1

mαI (XαI (t)− x) +
∑
i≤j
i∈αJ

mi(Xi(t)− x), (6.1)

where mαI =
∑

i∈αI mi.
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Now, we state a lemma which is trivial to prove but which we include for the sake of clarity of

the argument:

Lemma 6.1. If xα(t) ≤ x (i.e. xα is a cluster which lies to the left of position x at time t), then

mα(Xα(t) − x) ≤ 0; and if xα(t) > x, then mα(Xα(t) − x) > 0. In other words, clusters lying to

the left of x have net non-positive contributions to the sum
∑
mα(Xα(t) − x), and clusters lying

(strictly) to the right have net positive contributions.

Next, we prove a lemma making use of the collision criterion 5.1 from the previous section:

Lemma 6.2. Let j be an index, with xj belonging to the cluster xα. Then

∑
i≤j
i∈α

mi(Xi(t)− x) ≥ mα(Xα(t)− x) if xα(t) ≤ x

and ∑
i≤j
x∈α

mi(Xi(t)− x) > 0 if xα(t) > x.

In other words, left partial clusters of clusters lying to the left of x do not contribute more negatively

than the total cluster, and left partial clusters of clusters lying to the right of x contribute positively.

Proof. For the first part, assume for contradiction that

∑
i≤j
i∈α

mi(Xi(t)− x) < mα(Xα(t)− x) ≤ 0.

Since 0 <
∑

i≤j
i∈α

mi < mα, we can divide and preserve the inequality:

∑
i≤j
i∈α

mi(Xi(t)− x)∑
i≤j
i∈α

mi
< Xα(t),

which contradicts Theorem 5.1.

For the second part, simply note that by Theorem 5.1,

∑
i≤j
i∈α

mi(Xi(t)− x) ≥ Xα(t) > x,
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which, subracting x from each quantity, yields

∑
i≤j
i∈α

mi(Xi(t)− x)∑
i≤j
i∈α

mi
≥ Xα(t)− x > 0,

which gives the desired result.

Now we can prove Theorem 6.1:

Proof. Let k = maxαK , where K is the index for which x ∈ [xαK , xαK+1), at time t, and we claim

that the largest index at which the sum
∑j

i=1mi(Xi(t)−x) is minimized is at j = k. Since we take

the supremum of all minimizers, this will imply that y(x, t) = minαK+1 is the initial position of

the leftmost particle composing the first cluster that lies strictly to the right of x. Note that this

claim implies the desired result, since
∑

i|i<xk0
mi will be the total mass of all of the clusters to the

left of x at time t, which is precisely the accumulated mass at (x, t) for the entropy solution.

This claim is immediate from the combination of the previous two lemmas: The first lemma

says that terms of the form mαI (XαI (t) − x) for I ≤ K contribute non-positively to the sum as

written in (6.1), and the second lemma says that the minimum cannot occur inside such a cluster.

In other words,
∑j

i=1mi(Xi(t)− x) is a non-decreasing function of j for j ≤ maxαK . Hence, S(y)

is minimized at y = xk0. Similarly, the first and second lemmas combine to say that all terms after

j = k contribute positively to the sum, so the fact that y(x, t) is the supremum of all minimizers of

S(y) allows us to conclude that it is in fact the case that y(x, t) = xk0, and thus that the variational

formula gives M(x, t) = m1 + · · ·+mk, which is the total mass to the left of x at time t as desired.

Conclusions and Future Work

In summary, we have situated the sticky particle problem within a theoeretical framework as the

unique entropy solution to a conservation law, and have ultimately given a compact variational

formula for the accumulated mass function of the system at any positive time. Along the way, we

also proved the extremely useful ERS particle collsion criterion.
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Figure 6.1: A simulation of collisions in a 20-particle system.

Even without going beyond the scope of this paper, it is easy to see why these results are

useful: they make it much easier to model sticky particle systems computationally. For instance,

we used the ERS criterion to write a simple Python program which displays the particle cluster

paths forward in time, and used the variational formuala to create an animation of the evolution

of the accumulated mass function, in just a few lines of code — neither of these would have been

feasible using only our initial collision-by-collision characterization of the system (see Figure 6.1).

But the results become even more useful if we can use them to understand broader classes

of particle systems. In particular, can we use discrete particle models to approximate smooth-

density systems? In order to answer this question, we need to understand how perturbations in

initial data affect the accumulated mass in discrete systems. More precisely, the metric d(M, M̂) =

‖M−1−M̂−1‖∞ is a natural way to measure distance between accumulated mass functions. If x̂0
i , v̂i

are initial data for a perturbed system, can we bounded d(M,M̂) given bounds, say |x0
i − x̂0

i | < εx,

|vi− v̂i| < εv, on the perturbations? Clearly |xi(t)− x̂i(t)| < εx + εvt before any collsions, but what

happens if different particles end up in different clusters in the perturbed system? Can we use ERS

to bound the distances between the clusters in the perturbed systems and clusters that share an

initial point from the original system? See [6] for details.

24



References

[1] Lawrence C. Evans, Partial Differential Equations, American Mathematical Society, 1998.

[2] A. Bressan, Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem,

Oxford University Press, 2000.
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