RESTRICTING MOTION ALONG TANGENT DIRECTIONS IN
BUNDLE ADJUSTMENT

ADAM WILLIAMS

1. CONTEXT

Consider a bundle adustment problem optimizing a least-squares cost function
f over a variable x in a manifold M:

f(@) =r(z) "' Wr(z).

Here, r : M — R? is the residual and W is a weighting matrix (probably an inverse
covariance). Assume that we will refine the cost function by taking a Gauss-Newton
step:
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where J : T, M — R? is the Jacobian of () at a:
r(z &) ~r(x)+ Jo.

where @ is an exponential-like mapping from T, M to M.
In certain situations, it is useful to restrict the parameter motion at a given step
to a strict linear subspace of T, M. Let S C T, M be such a subspace, and let

n:7.Mm—-S

be the projection of the tangent space onto S. This writeup describes a convenient
formulation of the Gauss-Newton step in the restricted tangent space.

2. METHOD

Let II' be a right inverse of II, so that IIIIT is the identity on S. The adapted
Gauss-Newton step works as follows:
(1) Replace J : T,M — R? with JIIT : S — R<.
(2) Compute the Gauss-Newton step * € S with the modifed Jacobian.
(3) Lift the subspace step and apply as usual:
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3. APPLICATIONS

The simplest (and primary motivating) use case for the above method is to
restrict motion to (the span of) a specified set of coordinate axes in the tangent
space T, M. In particular, if T, M has axes (e1,...,ey), and we wish to restrict
motion along e;,,...,e;,, then Il is the (m — k) x m matriz obtained by removing
rows i1, . ..,i from the m x m identity matriz. And IIT =117,

3.1. Example: Holding the position of a sensor fixed. Consider a sensor
whose extrinsics are parameterized as a group element g = [R t} € SE(3), repre-
senting the “sensor-from-body” transformation, acting on body-frame points via
g-p = Rp+t. Assume a local parameterization via exponential coordinates

d= (Z € se¢(3), so that Jacobians are computed with respect to the sensor frame,
and updates are applied in the sensor frame:

g < exp(d)g.
Note that, in this parameterization, the position of the sensor in the the body frame
is given by
g l-0=-R"t.
To restrict the motion such that the position of the sensor in the body frame
remains fixed (without modifying or replacing the underlying exponential parame-
terization), we simply project onto the “rotation” axes:

II = [I3x3 Osxs].

The modified Gauss-Newton step using JIIT thus computes the optimal step re-
stricted to the “rotation-only” subspace of se(3), which gets lifted into se(3), re-

sulting in an update of the form § = w} € se(3). Hence the left-update applied to

0
g is of the form [S 0], and the updated value of g is

g+ exp(d)g=[SR St].
Observe that the sensor position in the body frame has not changed:
g 1-0=—(SR)"St=—-R"TSTSt=—-R"t.

3.2. Example: Parameterizing unit vectors as motion-restricted rota-
tions. Consider a variable n taking values in the unit sphere S2. Given an exist-
ing left-update exponential parameterization R < exp(w)R of the rotation group
SO(3), the motion restriction method provides an easy parameterization of such a
sphere point.

We obtain this parameterization by noting that a point n on the sphere can be
identified with the subspace of SO(3) that rotates, say, the +X axis onto n, and
that the extra degree of freedom in SO(3) corresponds to rotation about n. In
fancier mathematical language, we are noting that S2 22 SO(3)/SO(2).

Hence, we can model a unit vector as an element of SO(3), as long as, at each
step, we restrict rotation around the unit vector that the rotation represents. In
particular, we represent n as any rotation matrix
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whose inverse maps |[0| onto n, and use the subspace projection
0
01 0
= {O 0 1} ’
Then the modified Gauss-Newton step computes an update in the “roll-free” rota-
0
tion subspace, having the form 6 = |w, |. This update represents a small rotation
Wy

that leaves the +X axis fixed at the infinitesimal level, and thus provides a minimal
parameterization of the tangent space T}, 5% at the current parameters.



