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1. Context

Consider a bundle adustment problem optimizing a least-squares cost function
f over a variable x in a manifold M :

f(x) = r(x)>Wr(x).

Here, r : M → Rd is the residual and W is a weighting matrix (probably an inverse
covariance). Assume that we will refine the cost function by taking a Gauss-Newton
step:

δ = (J>WJ)−1J>Wr

x← x⊕ δ

where J : TxM → Rd is the Jacobian of r(x) at x:

r(x⊕ δ) ≈ r(x) + Jδ.

where ⊕ is an exponential-like mapping from TxM to M .
In certain situations, it is useful to restrict the parameter motion at a given step

to a strict linear subspace of TxM . Let S ⊂ TxM be such a subspace, and let

Π : TxM → S

be the projection of the tangent space onto S. This writeup describes a convenient
formulation of the Gauss-Newton step in the restricted tangent space.

2. Method

Let Π† be a right inverse of Π, so that ΠΠ† is the identity on S. The adapted
Gauss-Newton step works as follows:

(1) Replace J : TxM → Rd with JΠ† : S → Rd.
(2) Compute the Gauss-Newton step δ∗ ∈ S with the modifed Jacobian.
(3) Lift the subspace step and apply as usual:

δ = Π†δ∗

x← x⊕ δ.
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3. Applications

The simplest (and primary motivating) use case for the above method is to
restrict motion to (the span of) a specified set of coordinate axes in the tangent
space TxM . In particular, if TxM has axes (e1, . . . , em), and we wish to restrict
motion along ei1 , . . . , eik , then Π is the (m − k) ×m matrix obtained by removing
rows i1, . . . , ik from the m×m identity matrix. And Π† = Π>.

3.1. Example: Holding the position of a sensor fixed. Consider a sensor
whose extrinsics are parameterized as a group element g =

[
R t

]
∈ SE(3), repre-

senting the “sensor-from-body” transformation, acting on body-frame points via
g · p = Rp + t. Assume a local parameterization via exponential coordinates

δ =

[
ω
u

]
∈ se(3), so that Jacobians are computed with respect to the sensor frame,

and updates are applied in the sensor frame:

g ← exp(δ)g.

Note that, in this parameterization, the position of the sensor in the the body frame
is given by

g−1 · 0 = −R>t.
To restrict the motion such that the position of the sensor in the body frame

remains fixed (without modifying or replacing the underlying exponential parame-
terization), we simply project onto the “rotation” axes:

Π =
[
I3×3 03×3

]
.

The modified Gauss-Newton step using JΠ> thus computes the optimal step re-
stricted to the “rotation-only” subspace of se(3), which gets lifted into se(3), re-

sulting in an update of the form δ =

[
ω
0

]
∈ se(3). Hence the left-update applied to

g is of the form
[
S 0

]
, and the updated value of g is

g ← exp(δ)g =
[
SR St

]
.

Observe that the sensor position in the body frame has not changed:

g−1 · 0 = −(SR)>St = −R>S>St = −R>t.

3.2. Example: Parameterizing unit vectors as motion-restricted rota-
tions. Consider a variable n taking values in the unit sphere S2. Given an exist-
ing left-update exponential parameterization R ← exp(ω)R of the rotation group
SO(3), the motion restriction method provides an easy parameterization of such a
sphere point.

We obtain this parameterization by noting that a point n on the sphere can be
identified with the subspace of SO(3) that rotates, say, the +X axis onto n, and
that the extra degree of freedom in SO(3) corresponds to rotation about n. In
fancier mathematical language, we are noting that S2 ∼= SO(3)/SO(2).

Hence, we can model a unit vector as an element of SO(3), as long as, at each
step, we restrict rotation around the unit vector that the rotation represents. In
particular, we represent n as any rotation matrix

R =

n>b>
c>


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whose inverse maps

1
0
0

 onto n, and use the subspace projection

Π =

[
0 1 0
0 0 1

]
.

Then the modified Gauss-Newton step computes an update in the “roll-free” rota-

tion subspace, having the form δ =

 0
ωy

ωz

. This update represents a small rotation

that leaves the +X axis fixed at the infinitesimal level, and thus provides a minimal
parameterization of the tangent space TnS

2 at the current parameters.


