
COMPUTING THE EXPONENTIAL MAP ON SO(3)
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1. Overview

This document details how to compute various quantities related to the Lie group
SO(3) and its Lie algebra so(3), for practical engineering purposes. Recall that
SO(3) is the set of orthogonal, orientation-preserving linear transformations on R3

and can be realized as a matrix group:

SO(3) = {R ∈ GL(3) | RR> = I}.

2. Characterizing the Lie Algebra so(3)

2.1. Skew-Symmetric Matrix Representation. Differentiating a curve R in
SO(3) with R(0) = I yields

R′(0)> +R′(0) = 0,

meaning that the Lie algebra so(3) can be realized as the vector space of 3 × 3
skew-symmetric matrices, with Lie bracket given (as with all matrix groups) by the
commutator: [X,Y ] = XY −Y X. Hence we can choose the basis G = (G1, G2, G3)

G1 =

0 0 0
0 0 −1
0 1 0


G2 =

 0 0 1
0 0 0
−1 0 0


G3 =

0 −1 0
1 0 0
0 0 0



as a choice of exponential coordinates (or infinitesimal generators) on SO(3), and
do computations with respect to this basis.

2.2. Axis-Angle Vector Representation. An alternative realization of so(3) is
the vector space R3 with Lie bracket given by the cross product:

[ω, η] = ω × η.
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The isomorphism is given by the mapping

R3 ∼= so(3)

ω 7→ ω×

taking ω ∈ R3 to its skew matrix

ω× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 = ωxG1 + ωyG2 + ωzG3.

The axis-angle vector ω has the following geometric interpretation: Let

ω̂ = ω/‖ω‖
θ = ‖ω‖.

Then exp(ω) is a right-handed rotation of angle θ around the axis ω̂ ∈ R3. Hence
the infinitesimal generators G1, G2, and G3 that we have chosen are perturbations
around the x, y, and z axis, respectively. And the one-parameter subgroups θ 7→
exp(θω̂) compound infinitesimal rotations around a given axis for an angle of θ.

3. Exponential and Logarithm

3.1. Exponential. The goal of this section is to compute the exponential map,
taking an axis-angle vector to its rotation matrix in SO(3), using the matrix expo-
nential:

exp(ω) =

∞∑
k=0

ωk
×
k!
.

Let ω̂ = ω/‖ω‖, and θ = ‖ω‖. Using properties of the cross product, we have
ω̂3
× = −ω̂×, and so higher powers of ω̂× in the power series collapse:

ω̂3
× = −ω̂×
ω̂4
× = −ω̂2

×

ω̂5
× = ω̂×.

Hence we can group all of the power series terms into a ω̂× term and a ω̂2
× term:

exp(ω) = I +

(
1− θ3

3!
+
θ5

5!
+ · · ·

)
ω̂× + +

(
θ2

2!
− θ4

4!
+
θ6

6!

)
ω̂2
×

= I +

(
sin θ

θ

)
ω× +

(
1− cos θ

θ2

)
ω2
×.

Hence we have a practical formula for the exponential of a skew matrix. Note that,
in practice, the trigonometric coefficients should be computed using a Taylor series
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approximation for sufficiently small θ:

sin(θ)

θ
= 1− θ2

6
+

θ4

120
+O

(
θ6
)

1− cos θ

θ2
=

1

2
− θ2

24
+

θ4

720
+O

(
θ6
)

3.2. Logarithm. In order to derive a formula for the (partial) inverse of exp, we
must

(1) Determine the normal neighborhood U 3 0 ∈ so(3) on which exp is
invertible.

(2) Compute a formula for log : exp(U) ∼= U .

First, to compute the angle of rotation θ = ‖ω‖. If we take the trace of R = exp(ω),
then applying linearity and the fact that ω× is traceless, we obtain

trR = tr I + 0 +

(
1− cos θ

θ2

)
trω2
×

= 3 +

(
1− cos θ

θ2

)
(−2‖ω‖)

and thus

cos θ =
trR− 1

2
.

Restricting θ ∈ [0, π] then gives the unique solution

θ = arccos
trR− 1

2
.

Now to compute the axis of rotation. we first recall the fact that the set of n ×
n matrices Mn(R) is the direct (vector space) sum of the set of skew-symmetric
matrices and the set of symmetric matrices:

Mn(R) = Skewn(R)⊕ Symn(R).

That is, any square matrix can be written uniquely as a skew-symmetric matrix
and a symmetric matrix. In fact, this decomposition has a simple formula:

A =
A−A>

2
+
A+A>

2
.

Now, let R = exp(ω). Observe that the formula for exp from the previous section
is actually the skew-symmetric/symmetric decomposition of R:

R =

((
sin θ

θ

)
ω×

)
︸ ︷︷ ︸

R−R>
2

+

(
I +

(
1− cos θ

θ2

)
ω2
×

)
︸ ︷︷ ︸

R+R>
2

.
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Hence, if sin θ 6= 0, we can use the skew-symmetric part to solve for ω×:

ω× =

(
θ

2 sin θ

)(
R−R>

)
.

And so we simply choose ω such that

ω× = R−R>.

Note that, when θ is small, it is best to compute the coefficient using a Taylor
series:

θ

2 sin θ
=

1

2
+
θ2

12
+

7θ4

720
+O(θ6).

Now, this method breaks down when θ > 0 and sin(θ) = π (note that if θ = 0 then
we choose ω = 0, trivially). So, we have a unique log for all ω within the interior of
a ball of radius π. At the boundary θ = π, however, R is purely symmetric (hence
R = R> = R−1) and so the skew matrix provides no information. Note that this is
geometrically intuitive: A rotation of angle π is its own inverse. Hence we must use
the symmetric part to solve for ±ω, and make an arbitrary choice of sign: setting
θ = π, we have

R = I + 2ω̂2
×.

Note that ω̂2
× = ω̂ω̂> − I, and hence

ω̂ω̂> =
1

2
(R+ I).

we thus have

ω̂2
x =

1

2
(r11 + 1)

ω̂2
y =

1

2
(r22 + 1)

ω̂2
z =

1

2
(r33 + 1),

and the relative signs of the entries of ω̂ can be determined by the off-diagonal
components. This determines ω up to a factor of ±1.

3.3. Adjoint Representation of the Group. The adjoint representation of a
group element R ∈ SO(3) is the linear mapping

ω× 7→ Rω×R
>.

from so(3)→ so(3). We would like to write this linear transformation with respect
to the basis G, i.e. express it as a left multiplication by a 3× 3 matrix

ω 7→ AdR ω.
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This is straightforward, using the fact that the cross product is preserved by rota-
tion: Rx×Ry = R(x× y). Let y ∈ R3 be arbitrary, and observe

[AdR ω]×Ry =
[
Rω×R

>]Ry
= R(ω × y)

= Rω ×Ry
= [Rω]×Ry.

Hence [AdR ω]× = [Rω]×, meaning

AdR = R.

We say that SO(3) is self-adjoint.

3.4. Adjoint Representation of the Algebra. The adjoint representation of a
Lie algebra element ω ∈ so(3) is the linear mapping

η× 7→ ω×η× − η×ω×
from so(3) → so(3). We can derive the matrix for this mapping with respect to
G by applying the Jacobi identity for the cross product: For any x ∈ R3, and any
vectors ω, η ∈ so(3),

ω × (η × x) + η × (x× ω) + x× (ω × η) = 0.

Applying anti-commutativity,

ω × (η × x)− η × (ω × x) = (ω × η)× x.
Hence

[adω η]× x = ω×η×x− η×ω×x
= ω × (η × x)− η × (ω × x)

= (ω × η)× x
= [ω × η]× x.

Hence [adω η]× = [ω × η]× = [ω×η]×, meaning

adω = ω×.


