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1. Matrix Lie Groups and Lie Algebras

1.1. Matrix Groups as Transformation Groups. A matrix Lie group is a
differentiable manifold whose elements form a matrix group. Key examples include:

• GL(n), the group of invertible linear transformations on Rn.
• SO(n), the group of n× n rotation matrices.
• SE(n), the group of (n+ 1)× (n+ 1) matrices of the form

x =

(
R t
0 1

)
,

where R ∈ SO(n) and t ∈ Rn, viewed as the set of rigid transformations on
Rn using homogeneous coordinates.

A matrix Lie group G of n × n matrices has a natural group action on Rn, by
matrix multiplication: p 7→ xp for x ∈ G. We view the action of a matrix x as a
change-of-coordinate-frame, taking a point pA expressed with respect to some
frame A, to the same point, but expressed with respect to a second frame, B. When
it helps with clarity, we augment the notation to represent this viewpoint: We write
a matrix x ∈ G as xBA, and write

pB = xBApA.

for pA ∈ Rn.

Transforms chain and invert in the natural way:

xCA = xCBxBA

and
x−1BA = xAB .

1.2. Derivatives of Time-Parameterized Transforms (The Wrong Way).
Consider a time-parameterized transform, or, a curve x : R → G. Naively,
one might think that the most “natural” way to consider the derivative of x is to
simply take the coordinate-wise derivative of the matrix, ẋ. This is undesirable for
(at least) one simple reason: we want the derivatives of curves to be vectors, and
the naive matrix curve derivatives do not form a vector space! These quantities are
closed under scaling, as

d

dt
x(at) = aẋ,

but since x + y /∈ G in general, they are not closed under addition. That is, the
quantity ẋ+ ẏ is generall not the derivative of any curve in G.

Now, without motivation, say we consider the “true” derivative to of a curve to be
the derivative of the matrix, right-mulitplied by the inverse of the matrix: ẋx−1.
Clearly, these quantities are still closed under scaling, but now they are also closed
under addition: A simple calculation shows that, if x, y : R → G, then the sum of
their derivatives

ẋx−1 + ẏy−1
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at t = t0 is actually the derivative of the curve

t 7→ x(t)x(t0)−1y(t)

at t = t0. Hence we have a notion of derivative where the “tangent vectors” to
curves actually form a vector space, which provides motivation from a mathematical
perspective. In the next section, we will derive this notion of derivative ẋx−1 (and
its symmetric counterpart, −x−1ẋ) from physical intuition.

1.3. Derivatives of Time-Parameterized Transforms (The Right Way).
Consider a time-parameterized transform, or, a curve xBA : R → G. We can
motivate the notion of derivative for such a curve by asking, “what instantaneous
velocity does this transform induce on points via the group action?” That is, we can
view the “velocity” of a transform implicitly as a a velocity field on the points
it transforms, assigning to each point in space the vector rooted at that point
indicating the instantaneous direction in which the transform sends that point.

We can derive such a velocity field two different ways, by taking two different
viewpoints of the transformation. For any p ∈ Rn, we have the relation

pB = xBApA

for all t ∈ R.

Now we can either take a right-invariant view, where we view the left (output)
frame as moving with time, and the right (input) frame as static; or the left-
invariant view, where we view the right frame as static and the left frame as
moving. In the right-invariant view, the quantity pA is fixed, while pB is a function
of time, so differentiating yields

ṗB = ẋBApA

= ẋBAx
−1
BAxBApA

=
[
ẋBAx

−1
BA

]
pB .

Hence we have a differential equation

ṗB =
[
ẋBAx

−1
BA

]
pB

describing the velocity field expressed in B coordinates, at any given time.

Dually, if we take the left-invariant view, the quantity pB is fixed and pA varies
with time, so differentiating yields

0 = ẋBApA + xBAṗA,

and we can solve for

ṗA = −x−1BAẋBApA,

giving us a velocity field in the right frame.

The term left- (resp. right-) invariant is justified by noting that the value of ẋx−1

(resp. x−1ẋ) is not changed when x is right- (resp. left-) multiplied by a constant
group element c.
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The Lie algebra g is a vector space consisting of all such infinitesimal trans-
formation matrices, or, derivatives of smooth curves in G. The left- and right-
invariant views are equivalent and dual to each other:

g =
{
ẋx−1 : x : R→ G

}
=
{
−x−1ẋ : x : R→ G

}
When we restrict to derivatives at the identity element e ∈ G, the left- and right-
invariant views become identical, as x−1 = e. Hence to avoid making the arbitrary
choice of left versus right, is it standard to define the Lie algebra as the tangent
space at the identity:

g = {ẋ(0) : x : R→ G, x(0) = e}

Hence the Lie algebra consists of matrices of the same size as elements of G, and
has the same (vector space) dimension as the (manifold dimension of the) group.
The Lie algebra structure can be computed by differentiating the group. R ∈ SO(n)
satisfies RR> = R>R = I, differentiating this yields

ṘR> +RṘ> = 0,

meaning that the elements ṘR> of the Lie algebra so(n) are skew-symmetric ma-
trices.

1.4. Example: SO(3). Consider the 3D rotation group SO(3). Let R be a time-
parameterized rotation. Then the right-invariant velocity field induced on R3 at an
instant is given by a skew-symmetric matrix: p 7→ Ωp for Ω = ṘR> ∈ so(3). For
n = 3, set of n× n skew-symmetric matrices is isomorphic to R3 by the mapping

R3 ∼= so(3)

ω 7→ ω×,

where ω× is the matrix for the linear mapping given by the cross product with ω:

ω×p = ω × p.

Letting ω× = Ω, and noting that Ωω = ω×ω = 0, we can see that the instantaneous
velocity of ω ∈ R3 induced by R is zero. Hence ω is the instantaneous axis of
rotation of R (expressed in the left frame), and the velocity field induced by R is
given by the cross product with this axis:

ṗ = ω × p.

1.5. Example: SE(3). Now consider the rigid transformation group SE(3) on R3,
consisting of 4× 4 matrices

x =

(
R t
0 1

)
,

This group acts on homogeneous vectors ( p> 1 )
>

:

p 7→ x

(
p
1

)
= Rp+ t.
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The inverse of x is

x−1 =

(
R> −R>t
0 1

)
,

Hence elements of the Lie algebra se(3) have the form

ẋx−1 =

(
Ṙ ṫ
0 0

)(
R> −R>t
0 1

)
=

(
ṘR> −ṘR>t+ ṫ

0 0

)
.

=

(
ω× −ω × t+ ṫ
0 0

)
.

Hence the instantaneous velocity field (in the left frame) is given by a rigid trans-
formation with rotational component R and translation t is

ṗ = ω × (p− t) + ṫ.

Note that the general form of an se(3) element is(
ω× v
0 0

)
,

so we have an ismorphism with R6 by concatenating ω and v. We will use ξ to
denote such a 6-vector representing an se(3) element.

1.6. The Lie Bracket. We haven’t yet discussed what makes the Lie algebra an
algebra. The answer is that the Lie algebra is endowed with an antisymmetric
vector product, called the Lie bracket, defined as

[X,Y ] = XY − Y X
for X,Y ∈ g.

The Lie bracket on so(3) is given by the cross product:

[ω×, η×] = (ω × η)×,

whereas the bracket of se(3) elements is given by

[ξ1, ξ2] =

(
ω1 × ω2

ω1 × v2 − ω2 × v1

)
.

2. The Adjoint Representation

In general, if we have a transform TA on a vector space, expressed in a coordinate
system A, we change the coordinate representation of TA to a coordinate system B
by conjugation by the change-of-coordinates xBA from A to B:

TB = xBATAx
−1
BA,

so that if
qA = TApA,
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then

qB =
[
xBATAx

−1
BA

]
pB .

Changing the coordinates of a Lie algebra element is of particular signficance; the
map Ad : G→ GL(g) taking x ∈ G to the linear isomorphism “conjugate by x” is
called the adjoint representation of the group G:

AdxX = xXx−1.

For instance, the (negative) adjoint maps between the left- and right-invariant
derivatives of a time-parameterized transform:

−x−1ẋ = −Adx−1

[
ẋx−1

]
ẋx−1 = −Adx

[
−x−1ẋ

]
.

The map Ad is a group homomorphism, so that

Adxy = AdxAdy

and

Adx−1 = Ad−1x .

The adjoint representation as a function on the 3-vector realization of so(3) (given
by ω 7→ ω×) is simply multiplication by the respective matrix:

AdR = R.

We say that SO(3) is self-adjoint. For the 6-vector realization of SE(3), it is

Adx =

(
R 0
t×R R

)
,

so that

Adxξ =

(
Rω

t× (Rω) +Rv

)
,

3. Differential Calculus

3.1. Left- and Right-Invariant Pushforwards. The pushforward of a func-
tion f : G → H between Lie groups is a linear mapping from g → h which takes
derivatives of a curve x in G to derivatives of the curve f ◦ x in H. For the right-
invariant view, this means

f∗
[
ẋx−1

]
= ˙[f(x)]f(x)−1.

That is, the pushforward of a velocity field ẋx−1 is the velocity field given by the
same curve x mapped through f . Note that here there is an implicit “base point”
x for the pushforward (i.e. we could write (f∗)x, but the base point x is already
expressed by the ẋx−1 notation).

We can check basic properties: if f : G → H is constant, then clearly, f∗ = 0,
and if f : G → G is the identity, then the derivative is the identity as well. These
properties, together with the product rule for Lie groups, allow us to compute



A QUICK AND PRATICAL INTRO TO MATRIX LIE GROUPS 7

derivatives of more complicated functions between Lie groups. The product rule
can be derived as follows:

(fg)∗
[
ẋx−1

]
= ˙[f(x)g(x)] [f(x)g(x)]

−1

=
(

˙[f(x)]g(x) + f(x) ˙[g(x)]
)
g(x)−1f(x)−1

= ˙[f(x)]f(x)−1 + f(x) ˙[g(x)]g(x)−1f(x)−1

= f∗
[
ẋx−1

]
+ Adf(x)g∗

[
ẋx−1

]
.

Hence we have the right-invariant product rule:

(fg)∗ = f∗ + Adfg∗.

Dually, we can take the left-invariant view and get an analogous definition:

∗f
[
−x−1ẋ

]
= −f(x)−1 ˙[f(x)].

Note that we moved the ∗ to the other side of f to disambiguate the left vs the
right pushforward. This yields a left-invariant product rule:

∗(fg) =
[
Ad−1g

]
∗f + ∗g.

Naturally, the left- and right-invariant pushforwards are invariant under left- and
right-translation of the function, respectively. That is, if c ∈ G is constant, then

(fc)∗ = f∗

and

∗(cf) = f.

3.2. Example: Differentiating the Group Inverse. The pushforwards of the
group inverse follows from the product rule:

ı∗ = −Adı

and

∗ı = −AdidG
.

where ı(x) = x−1.

3.3. Example: Differentiating the Group Action. Let Ap(x) = xp be the
group action on a point p ∈ Rn. Then

(Ap)∗ẋx
−1 = ˙[xp] = ẋx−1xp = ẋx−1Ap(x).

(note that we can drop the −Apx on the right-hand side since the output space is
a vector space). Hence the (right-invariant) pushforward of the group action with
respect to the group is the mapping “right-multiply by the transformed point”.

For example, consider SO(3). The pushforward of the action Ap with respect to a
roation R is

ω× 7→ ω×Rp = −(Rp)×ω.

So in the 3-vector representation, the matrix for the pushforward of Ap evaluated
at group element R is simply −(Rp)×.
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4. The Exponential Map

4.1. Lie Algebra Elements as Infinitesimal Generators. Consider a time-
parameterized transform MBA whose instantaneous velocity field is constant:

ṗB(t) = XpB(t),

where X ∈ g does not vary with time. Then the velocity field is given by a time-
independent homogeneous linear ODE, for which the solution is well-known: we
can write xB over time as

pB(t) = exp(tX)pB(0),

where exp is the matrix exponential, given by

exp(A) =

∞∑
k=0

Ak

k!
.

When viewed as a mapping exp : g → G, the matrix exponential is called the
exponential map. For a Lie algebra element X, exp(tX) transforms points by
moving according to the flow determined by the velocity field x 7→ Xx for time t.

4.2. The Baker-Campbell-Hausdorff Formula.

4.3. Example: SO(3). For certain Lie groups, the exponential map has a closed
form. Consider SO(3). The exponential map is

exp(ω) =

∞∑
k=0

ωk
×
k!
.

Writing θ = ‖ω‖ and ω̂ = ω/θ, we can apply properties of the cross product to see
that ω̂3

× = −ω̂×, and so higher powers of ω̂× in the power series collapse:

ω̂3
× = −ω̂×
ω̂4
× = −ω̂2

×

ω̂5
× = ω̂×.

Hence we can group all of the power series terms into a ω̂× term and a ω̂2
× term:

exp(ω) = I +

(
1− θ3

3!
+
θ5

5!
+ · · ·

)
ω̂× + +

(
θ2

2!
− θ4

4!
+
θ6

6!

)
ω̂2
×

= I +

(
sin θ

θ

)
ω× +

(
1− cos θ

θ2

)
ω2
×.

Hence we have a practical formula for the exponential map on SO(3). The geometric
interpretation of the exponential map on SO(3) is that exp(ω) is the (right-handed)
rotation of θ radians about the axis ω̂.

4.4. Example: SE(3). Now consider SE(3).


