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1. Derivatives as Sensitivity Measurements

Consider a scalar-valued function of a scalar variable, y = f(x). The derivative
of f can be viewed as a “sensitivity measurement” of f , in the sense that it maps
first-order perturbations δ of x to first-order perturbations ε of y. A first-order
perturbation of a scalar x is another scalar δ that is “infinitesimally small” in the
sense that δ2 = 0. The derivative of f at x satisfies the relation

f(x+ δ) ≈ f(x) + dfxδ,

where ≈ indicates equality up to first order (i.e. equality assuming δ2 = 0).
For example. consider f(x) = x2. How does f change under a first-order per-

turbation of x?

f(x+ δ) = (x+ δ)2

= x2 + 2xδ + δ2

≈ x2 + 2xδ

= f(x) + 2xδ.

Hence dfx is the linear mapping δ 7→ 2xδ. The interpretation of this is: “if we
change x by a small amount δ, then x2 will (approximately) change by the small
amount 2xδ.”

You can derive various “rules” for computing derivatives of complicated scalar
functions:

(1) Sum rule:

(f + g)(x+ δ) = f(x+ δ) + g(x+ δ)

≈ f(x) + dfxδ + g(x) + dgxδ

= (f + g)(x) + (dfx + dgx)δ.

Hence

d(f + g) = df + dg.

(2) Product rule:

(fg)(x+ δ) = f(x+ δ)g(x+ δ)

≈ (f(x) + dfxδ)(g(x) + dgxδ)

≈ f(x)g(x) + (dfxδ)g(x) + f(x)(dgxδ).

Hence

d(fg) = dfg + fdg.
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(3) Chain rule:

(f ◦ g)(x+ δ) = f(g(x+ δ))

≈ f(g(x) + dgxδ)

≈ f(g(x)) + dfg(x)dgxδ.

Hence

d(f ◦ g) = dfgdg.

A similar story holds if we replace scalars with general vectors, where the “first-
order condition” is that ‖δ‖2 = 0 for vector perturbations δ. For example, we can
compute the derivative of the squared-norm function n(x) = x>x:

n(x+ δ) = (x+ δ)>(x+ δ)

≈ x>x+ 2x>δ

= n(x) + 2x>δ.

So dnx = 2x>.

2. Derivatives on Manifolds

The story from the previous section generalizes to manifolds, as long as we make
the distinction that perturbations and manifold points no longer have the same
type. On manifolds, perturbations of a point p ∈ M are vectors in the tangent
space at p. So, if we have a function between manifolds f : M → N , then its
derivative at p is a linear mapping between tangent spaces:

dfp : TpM → Tf(p)N.

If we have some method ⊕ of mapping perturbations to manifold points on each of
M and N (for instance an exponential map), then the derivative satisfies the same
“first-order approximation property”:

f(p⊕Xp) ≈ f(p)⊕ dfpXp.

where Xp ∈ TpM . Once again, it measures how much f(p) is perturbed when you
perturb p.

3. Derivatives on Lie Groups

For Lie groups, the story is simpler than the story for general manifolds, since
a Lie group has the “universal tangent space” (the tangent space at the identity)
that can be used at each point in the group. Recall that a transformation g ∈ G
admits both left and right perturbations by a tangent vector X ∈ TeG:

X ⊕ g = exp(X)g

g ⊕X = g exp(X)

Thus, for a function φ : G → H (where G and H are both Lie groups), we have
four different types of derivative, each being a linear mapping from TeG to TeG:

• Mapping left-perturbations of the input to left-perturbations of the output:

φ(X ⊕ g) ≈ Y ⊕ φ(g).
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• Mapping right-perturbations of the input to right-perturbations of the out-
put:

φ(g ⊕X) ≈ φ(g)⊕ Y.

• Mapping left-perturbations of the input to right-perturbations of the out-
put:

φ(X ⊕ g) ≈ φ(g)⊕ Y.

• Mapping right-perturbations of the input to left-perturbations of the out-
put:

φ(g ⊕X) ≈ Y ⊕ φ(g).

Clearly, devising a notation that distinguishes between these types of derivatives
becomes very cumbersome (and might look something like dL,R

g φ to indicate “deriv-
ative mapping left-perturbations to right-perturbations” at g of φ”). Fortunately,
using the frame-based notation makes everything clearer.

From the perspective of frames, derivatives are taken with respect to frames,
rather than with respect to group elements, and the derivative simply describes
how a perturbation in a given frame affects another frame. For example, consider
the product of two group elements: (g, h) 7→ gh. One might want to know how
perturbations of g and h affect the product. So say that g = (c← b) and h = (b←
a). Then gh = (c ← a) and we can ask “what is the derivative of (c ← a) with
respect to either a, b, or c? And we can express the result in either frame c or in
frame a. Hence to specify a derivative (as a mapping from TeG → TeG) we have
specify

• Which frame we apply the perturbation in.
• Which frame the output of the derivative mapping is expressed in.

So what happens to (c← a) under a perturbation of each frame?

• Perturbing c:

Xc ⊕ (c← b)(b← a) = Xc ⊕ (c← a)

= (c← a)⊕Ada←cX
c.

• Perturbing a:

(c← b)(b← a)⊕Xa = (c← a)⊕Xa

= Adc←aX
a ⊕ (c← a).

• Perturbing b:

(c← b)⊕Xb(b← a) = (c← b)Xb ⊕ (b← a) = (c← b) exp(Xb)(b← a)

= Adc←bX
b ⊕ (c← a)

= (c← a)⊕Ada←bX
b.
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So, say that Dc
a is the derivative whose input perturbation is expressed in a and

whose output is expressed in c (etc). Then

Dc
c(c← b)(b← a) = Id

Da
c (c← b)(b← a) = Ada←c

Dc
a(c← b)(b← a) = Adc←a

Da
a(c← b)(b← a) = Id

Dc
b(c← b)(b← a) = Adc←b

Da
b(c← b)(b← a) = Ada←b

Notice the general rule

Dg
f (c← b)(b← a) = Adg←f,

as long as f, g ∈ {a, b, c}.


