NOTE ON THE DERIVATIVE OF THE GROUP ACTION

ADAM WILLIAMS

1. GENERAL FORMULA

Consider a transformation (b < a) and a point P, so that P, = (b + a)P,. Our
goal is to find an expression for the derivative of P, with respect to a perturbation
of the frame b. To find this expression we should apply a perturbation exp(X?®)
on the left, and map it through to an additive perturbation of P,. Concretely, let
Ap(b < a) = Py, and let DyAp : T.G — RY be the derivative as described. Then
we should be able to write

(D[,AP)(Xb) + Py =~ (Xb ©® (b — Cl))Pa,

where = is first-order equality (i.e. equality assuming that the squares of tangent
vectors are zero).

It’s most convenient to do this calculation by viewing transformations and tan-
gent vectors in their matrix representation, so that X°® and (b < a) are d x d
matrices. In this representation,

exp(X®) =T+ X° +%(X")2+§(Xb)3+...
~1+X°.
Hence
(X @ (b + a))Py = exp(X°)(b + a) Py
~ (T4 X°) (b« a)P,
=P, + X°P,.
Hence

(DeAp)(X®) = X"Py.

That is, the (left) derivative of of the group action with respect to the group element
is the mapping that takes a tangent vector and “applies its action” to the point.
See the last section for why this is intuitive.

It’s important to note that this gives a formula for the derivative of the action
as a linear mapping, and does not yield a general formula for the Jacobian matrix
of that mapping.

2. JACOBIANS

For notational ease we’ll drop the frame notation in the below examples. It’s
assumed that all derivatives are in the output frame.
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2.1. General Jacobian using Generators. Of course, given the formula (D,A4,)(X) =
Xgp, we can trivially compute the Jacobian for any group by choosing a set of gen-
erators and applying this map to each. As such, the ith column J; of the Jacobian

is given by

where G; is the (matrix representation of the) ith generator.

2.2. Jacobian of Action of SO(3). A tangent vector w in the Lie algebra of SO(3)
has a matrix representation as the cross product matrix wyx. Hence the derivative
of the group action A, by a group element R is given by

(DrA,)(wx) = wxRp
= w x (Rp)
= (—Rp) xw
= (—Rp)xw.

Hence the derivative of the group action can be viewed as taking the tangent vector
w to the point (—Rp)«w, so the Jacobian matrix is (—Rp)x.

2.3. Jacobian of Action of SE(3). A tangent vector in X € SE(3) is written as
[LZ] where w € s0(3) is the angular component and v € R? is the linear component.

In matrix representation this is

|wx v
v
- . R | .
Hence the derivative of the action of g = 0 1l te

el ][5 3 B - [

is given by

w|  fwx 0] [q]
ol =[5 o) [
. PEYEX]
L 0
=g xw+0]
= 0 |
_ [—qx  Isxs| [w
| 0 0 ]|v

Dropping the homogeneous coordinate, we see that the Jacobian matrix is [—qx Isy 3] .
Note that you can also derive this matrix by differentiating with respect to the ro-
tation and translation components independently.
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3. THE “ACTION” OF THE LIE ALGEBRA

In the first section, we saw that, under the matrix representation of the group
and algebra, we have the almost-intuitive-seeming formula for the derivative of the
action

DyAp(X®) = X" Py,

which says “the derivative of left-multiplication by the group is left-multiplication
by the algebra”. It turns out there is a physical interpretation of the Lie algebra
that makes this formula meaningful:

Consider a time-parameterized transformation xz(¢t) = (b(t) < a), where the
output frame b is moving with time. At any point in time ¢, the derivative of this
transformation (expressed in the moving output frame) is a tangent vector X°(t),
given by X°(t) = 2/(t)x~1(t) (the derivative on the right-hand side is coordinate-
wise). The output frame is changing, while the input frame is constant, which
means we can find an expression for the velocity of points in the output frame
under the transformation:

L) = o [a(0)P)
=a'(t)P,
=2/ ()" (t)x(t) P,
=2/ (H)x " (t) Py ()
= X Py(2)

In short,

In words, the derivative of a time-parameterized transformation computes
the time derivatives of the acted-on points under the transformation.

For example, consider SO(3). The output frame time derivative of a rotation
R(t) is the skew matrix wy = R/(t)R"(t). This means that the time derivative of
an acted-on point ¢(¢f) = R(t)p in the ouput frame is

q'(t) =w x q(t),

which is simply angular velocity.

This interpretation of the Lie algebra makes the notion of “infinitesimal trans-
formation” quite literal: An element of the Lie algebra is a transformation that
transforms points infinitesimally, in the sense that it applies a small perturbation
(given by the derivative) to each point. It also lets us view the exponential map as
the natural solution to an ODE. Namely, say that the transform x(¢) has “constant
velocity” in the sense that X°® does not change with time. Then the velocity of
points in the output frame is given by

d

dt
Since X' is constant, there is an exact solution that expresses Py(t) at any time in
terms of the initial value P;(0), namely

Py (t) = exp (tX°) Py (0).

Py(t) = X Py(t).
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Hence, for a Lie algebra vector X the exponential transforms points by moving
according to the flow determined by the velocity field X? for time 1.



